Optimization of X-Ray Scattering for Characterization of Materials

Silviano Torres Physics, 4th Year Undergraduate

Mentor: Miguel Zepeda, Dr. Youli Li Faculty Advisor: Cyrus Safinya Materials Research Laboratory

EUREKA, UC Santa Barbara

Thursday, August 11, 2012

Small Angle X-ray Scattering (SAXS) is important and has a variety of real world applications

Protein

DNA

Graphene

- Allows scientist and engineers to manipulate materials to our benefit
- Biological materials as a vehicle for drug delivery.

http://upload.wikimedia.org/wikipedia/commons/6/60/Myoglobin.png, http://www.wallpapervortex.com/tag-dna.html http://en.wikipedia.org/wiki/File:Graphen.jpg

Interaction of X-Rays with matter provides useful information about the material

- Bragg Peak = Scattering
- X-Rays scatter off all materials, due to electron interaction.
 - undergo constructive interference in accordance to Bragg's law
- Precisely define incident X-Ray beam by controlling beam size and divergence

SAXS is a very powerful method in determining the nanostructure of materials

SAXS Setup

SAXS is a very powerful method in determining the nanostructure of materials

SAXS Diffractometer Setup

To optimize SAXS performance a better understanding of blade and beam interaction is necessary

MRD PRO X'Pert Pro has no beam stop, thus allows for better view of defined X-Ray beam

X'Pert Pro not in vacuum!

Picture illustration in courtesy of National Nanotechnology Research Center, Bilkent University, UNAM, http://www.nano.org.tr/mrd.html

Candidate material for hybrid scatterless slit

- Significant factors:
 - X-Ray Attenuation for slit and base
 - Ability to stop X-Rays
 - Correlated to density
 - Strongest reflection angles (pitch angles)
 - Angle on base tapered edge

Candidate Materials Properties:

Material:	Tungsten	Silver	Germanium	Aluminu m
Density [g/cm³]	19.3	10.49	5.32	2.70
X-Ray Attenuation Length [μm]	3.13	4.57	28.12	78.26
Crystal Structure	BCC	FCC	FCC	FCC

Newly designed scatterless slits have proven to drastically reduce slit scattering...

Aluminum Blade (no crystal)

Aluminum Blade Scattering

Hybrid Blade Single Ge Crystal

Hybrid Blade Scattering

Scattering

Newly designed scatterless slits have proven to drastically reduce slit scattering...

Parasitic Scattering Plots

MRD X'Pert Pro allows us to characterize the X-ray beam profile for optimal use

Degrees

- Scattering slightly detected
- Incident X-ray beam too intense to analyze any scattering
- Air scattering another issue
- Further data is being processed to bring about better results

Summer research has lend to much insight

- The MRD Pro setup is providing insight into X-ray beam profile
 - Further investigation into experimental setup necessary.
- Many candidate materials to analyze
 - X-Ray attenuation, crystal smoothness, pitch angle etc
- Plan on continuing my research in the Fall in hopes of achieving optimal beam definition.

Acknowledgements

- Mentors: Miguel Zepeda and Dr. Youli Li
- Faculty Advisor: Cyrus Safinya
- Early Undergraduate Research and Knowledge Acquisition (EUREKA)
- MRL Facilities

