Catalytic Activity of Vanadium Oxide Nano-clusters

Sebastian Lee

Mentor: Hunter Nielson; Advisor: Steve Buratto

EUREKA, Department of Chemistry, UCSB

August 21st 2012

Our goal is to understand Vanadium Oxides on a nano-scale

Small clusters exhibit peculiar properties

We want to fundamentally understand these properties

 New materials with these properties can be created with cluster deposition

Finding the catalytically active clusters is the first step

Synthesize various vanadium oxide nano-clusters (V_xO_y)

 Deposit and run experiments on the vanadium oxide nanoclusters

Understand how vanadium oxide performs its role as a catalyst

The partial oxidation of methanol to formaldehyde

$$CH_3OH + 1/2O_2 \rightarrow V Ix O Iy - CH_2O + H_2O$$

methanol

formaldehyde

Creation of ionized Vanadium Oxides with laser ablation

Mass selection of Vanadium Oxides by a controllable magnet

Synthesizing and identifying various vanadium oxides

Soft landing Vanadium Oxides onto the TiO₂ surface

Determining the biasing voltage needed to soft land V₃O₄⁺ ions

Determining catalytic behavior with temperature programmed desorption (TPD)

V₃O₄⁺ possibly exhibits catalytic behavior for the studied reaction

Formaldehyde vs. Methanol

What We Have so Far

Successfully deposited V₂O₆⁺ and V₃O₄⁺

 Performed temperature-programmed desorption on both species

V₃O₄ possibly exhibits catalytic behavior

Future Goals

- Continue to deposit and run TPD experiments on the other vanadium oxides
- Perform X-ray Photoelectron Spectroscopy (XPS)
- Image the surface with Scanning Tunneling Microscopy (STM)

Acknowledgments

- The Buratto Group
- EUREKA
- CNSI
- NSF

